Regression analysis

$$
\begin{gathered}
y=a+b x \\
a=\frac{\sum y}{n}-\frac{b \sum x}{n} \\
b=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}} \\
r=\frac{n \sum x y-\sum x \sum y}{\sqrt{\left(n \sum x^{2}-\left(\sum x\right)^{2}\right)\left(n \sum y^{2}-\left(\sum y\right)^{2}\right)}}
\end{gathered}
$$

Learning curve

$$
Y=a x^{b}
$$

Where $\mathrm{Y}=$ cumulative average time per unit to produce x units
$\mathrm{a}=$ the time taken for the first unit of output
$x=$ the cumulative number of units produced
$b=$ the index of learning $(\log L R / \log 2)$
$L R=$ the learning rate as a decimal

Demand curve

$$
\begin{aligned}
& P=a-b Q \\
& b=\frac{\text { change in price }}{\text { change in quantity }} \\
& a=\text { price when } Q=0 \\
& M R=a-2 b Q
\end{aligned}
$$

