*Note: *

(a) In both cases the effective rate of interest to Nero Co on the loan is 5%, the FRA-agreed rate: $2m x 5/100 x 3/12 = $25,000.

(b) In part (iii) when interest rates have fallen, Nero Co would no doubt wish that it had not entered the FRA so that it would not have to pay Helpy Bank $5,000. However, the purpose of the FRA is to provide certainty, not to guarantee the lowest possible cost of borrowing to Nero Co and so $5,000 will have to be paid to Helpy Bank.

### Interest rate derivatives

The interest rate derivatives that will be discussed are:

(i) Interest rate futures

(ii) Interest rate options

(iii) Interest rate caps, floors and collars

(iv) Interest rate swaps

Interest rate futures

Futures contracts are of fixed sizes and for given durations. They give their owners the right to earn interest at a given rate, or the obligation to pay interest at a given rate.

*Selling* a future creates the obligation to *borrow* money and the obligation to *pay interest*

*Buying* a future creates the obligation to *deposit* money and the right to *receive interest.*

Interest rate futures can be bought and sold on exchanges such as Intercontinental Exchange (ICE) Futures Europe.

The price of futures contracts depends on the prevailing rate of interest and it is crucial to understand that as interest rates rise, the market price of futures contracts falls.

Think about that and it will make sense: say that a particular futures contract allows borrowers and lenders to pay or receive interest at 5%, which is the current market rate of interest available. Now imagine that the market rate of interest rises to 6%. The 5% futures contract has become less attractive to buy because depositors can earn 6% at the market rate but only 5% under the futures contract. The price of the futures contract must fall.

Similarly, borrowers will now have to pay 6% but if they sell the future contract they have to pay at only 5%, so the market will have many sellers and this reduces the selling price until a buyer-seller equilibrium price is reached.

- A rise in interest rates reduces futures prices.
- A fall in interest rates increases futures prices.

In practice, futures price movements do not move perfectly with interest rates so there are some imperfections in the mechanism. This is known as **basis risk.**

The approach used with futures to hedge interest rates depends on two parallel transactions:

- Borrow/deposit at the market rates
- Buy and sell futures in such a way that any gain that the profit or loss on the futures deals compensates for the loss or gain on the interest payments.

Borrowing or depositing can therefore be protected as follows:

**Depositing and earning interest**

The depositor fears that interest rates will fall as this will reduce income.

If interest rates fall, futures prices will rise, so *buy *futures contracts now (at the relatively low price) and *sell* later (at the higher price). The gain on futures can be used to offset the lower interest earned.

Of course, if interest rates rise the deposit will earn more, but a loss will be made on the futures contracts (bought at a relatively high price then sold at a lower price).

As with FRAs, the objective is not to produce the best possible outcome, but to produce an outcome where the interest earned plus the profit or loss on the futures deals is stable.

**Borrowing and paying interest**

The borrower fears that interest rates will rise as this will increase expense.

If interest rates rise, futures prices will fall, so* sell* futures contracts now (at the relatively high price) and *buy* later (at the lower price). The gain on futures can be used to offset the lower interest earned.

Students are often puzzled by how you can sell something before you have bought it. Simply remember that you don’t have to deliver the contract when you sell it: it is a contract to be fulfilled in the future and it can be completed by buying in the future.

Of course, if interest rates fall the loan will cost less, but a loss will be made on the futures contracts (sold at a relatively low price then bought at a higher price).

Once again, the aim is stability of the combined cash flows.

**Summary**

The summary rule for interest rate futures is:

- Depositing: buy futures then sell
- Borrowing: sell futures then buy

Interest rate options

Interest rate options allow businesses to protect themselves against adverse interest rate movements while allowing them to benefit from favourable movements. They are also known as interest rate guarantees. Options are like insurance policies:

- You pay a premium to take out the protection. This is non-returnable whether or not you make use of the protection.
- If interest rates move in an unfavourable direction you can call on the insurance.
- If interest rates move favourable you ignore the insurance.

Options are taken on interest rate futures contracts and they give the holder the right, but not the obligation, either to buy the futures or sell the futures at an agreed price at an agreed date.

**Using options when borrowing**

As explained above, if using simple futures contracts the business would sell futures now then buy later.

When using options, the borrower takes out an option to sell futures contracts at today’s price (or another agreed price). Let’s say that price is 95. An option to sell is known as a **put **option (think about putting something up for sale).

If interest rates rise the futures contract price will fall, let’s say to 93. Therefore the borrower will buy at 93 and will then choose to **exercise** the option by exercising their right to sell at 95. The gain on the options is used to offset the extra interest that has to be paid.

If interest rates fall the futures contract price will rise, let’s say to 97. Clearly, the borrower would not buy at 97 then exercise the option to sell at 95, so the option is allowed to **lapse** and the business will simply benefit from the lower interest rate.

**Using options when depositing**

As explained above, if using simple futures contracts the business would buy futures now and then sell later.

When using options, the investor takes out an option to buy futures contracts at today’s price (or another agreed price). Let’s say that price is 95. An option to buy is known as a **call **option.

If interest rates fall the futures contract price will rise, let’s say to 97. The investor would therefore sell at 97 then **exercise** the option to buy at 95. The gain on the options is used to offset the lower interest that has been earned.

If interest rates rise the futures contract price will fall, let’s say to 93. Clearly, the investor would not sell futures at 93 and exercise the option by insisting on their right to sell at 95. The option is allowed to **lapse **and the investor enjoys extra income form the higher interest rate.

Options therefore give borrowers and lenders a way of guaranteeing minimum income or maximum costs whilst leaving the door open to the possibility of higher income or lower costs. These ‘heads I win, tails you lose’ benefits have to be paid for and a non-returnable **premium **has to be paid up front to acquire the options.

#### Interest rate caps, floors and collars

**Interest rate cap: **

**A cap **involves using** **interest rate options to set a maximum interest rate for borrowers. If the actual interest rate is lower, the option is allowed to lapse.

**Interest rate floors: **

**A floor **involves using interest rate options to set a minimum interest rate for investors. If the actual interest rate is higher the investor will let the option lapse.

**Interest rate collar: **

**A collar** involves using** **interest rate options to confine the interest paid or earned within a pre-determined range. A **borrower** would buy a cap and sell a floor, thereby offsetting the cost of buying a cap against the premium received by selling a floor. A **depositor** would buy a floor and sell a cap.

#### Interest rate swaps

Interest rate swaps allow companies to exchange interest payments on an agreed notional amount for an agreed period of time. Swaps may be used to hedge against adverse interest rate movements or to achieve a desired balanced between fixed and variable rate debt.

Interest rate swaps allow both counterparties to benefit from the interest payment exchange by obtaining better borrowing rates than they are offered by a bank.

Interest rate swaps are arranged by a financial intermediary such as a bank, so the counterparties may never meet. However, the obligation to meet the original interest payments remains with the original borrower if a counterparty defaults, but this counterparty risk is reduced or eliminated if a financial intermediary arranges the swap.

The most common type of swap involves exchanging fixed interest payments for variable interest payments on the same notional amount. This is known as a plain vanilla swap.

Interest rate swaps allow companies to hedge over a longer period of time than other interest rate derivatives, but do not allow companies to benefit from favourable movements in interest rates.

Another form of swap is a currency swap, which is also an interest rate swap. Currency swaps are used to exchange interest payments and the principal amounts in different currencies over an agreed period of time. They can be used to eliminate transaction risk on foreign currency loans. An example would be a swap that exchanges fixed rate dollar debt for fixed rate euro debt.

**Ken Garrett is a freelance lecturer and writer**